Mes: diciembre 2015

Felicitación 2016 – Árbol de Navidad con paradoja de Deland

Este año queremos enviaros nuestros mejores deseos para 2016 con un pequeño árbol de Navidad que sirve para realizar la conocida paradoja de Deland. Puedes encontrar información sobre esta paradoja en el libro Matemáticas, magia y misterio” de Martin Gardner. (RBA 2011). Con este árbol podrás hacer un juego de magia, en el que una de las velas rojas desaparece y se convierte en una blanca.

Felicitacion Navidad 2015


¿Cómo se construye el árbol?

Necesitas la hoja con las piezas del recortable, que puedes descargar aquí:

Árbol Divermates – Feliz 2016

Además necesitarás tijeras, pegamento y quizá 5 minutos. Verás que es muy muy fácil de construir.

Materiales necesarios

En el documento hay piezas para construir 2 árboles. Hemos pensado que quizá, aprovechando el espíritu navideño, puedes construir un árbol para ti y otro para regalárselo a alguien. Además así podemos hacer que Divermates sea conocido por mucha más gente…

Vamos a fijarnos en las piezas de media página. Para empezar debes recortar las dos piezas verdes, con las que vamos a construir dos conos. En realidad la pieza de 3 estrellas amarillas no es necesaria, es solo un adorno que explicaremos al final.

Las piezas basicas

Con ayuda de una regla, o del borde de una mesa, curva las piezas para que empiecen a tomar la forma del cono. Es muy importante que NO dobles la lengüeta.

Piezas curvadas

Puede ayudar, antes de pegar, hacer un pequeño doblez en el vértice del cono, hacia la mitad, lejos de la línea de la lengüeta.

Pequeño doblez que ayuda

Extiende pegamento, por la cara interior del papel, en la parte opuesta a la lengüeta.

Extender el pegamento por dentro

Y forma el cono haciendo coincidir el borde del papel con la línea punteada de color verde

pegando y alineando 1

pegando y alineando 2

Puedes ayudarte a dar un acabado perfecto al vértice presionando desde dentro con la punta de un bolígrafo.

Terminado del vertice con un boli

Realiza los mismo pasos con la otra pieza. ¡Ya tienes terminadas las dos partes importantes del árbol!

Las dos piezas listas

Debes poner el cono pequeño encima del grande. NO LOS PEGUES, necesitamos que el superior pueda girar con respecto al inferior.

La paradoja de Deland

Observemos que una de las partes de vela blanca inferiores tiene debajo una estrella. Debemos hacer coincidir esa parte con la otra parte de vela blanca superior que también tiene una estrella encima, como se muestra en la imagen.

posicion inicial

Si ahora observas alrededor del árbol podrás contar 3 velas blancas y 5 velas rojas.

Ahora vamos a girar la pieza superior y la vamos a colocar en otra posición. En este giro haremos coincidir la parte inferior blanca con estrella, con una parte superior con estrella en la que solo se llega a ver la llama, como muestra la imagen.

posicion final

Si ahora cuentas las velas verás que una de las velas rojas se ha convertido en blanca, y tenemos 4 de cada color. ¡¡¡MAGIA!!! Se puede apreciar muy bien si lo miras desde arriba.

IMG_7971_2

 Te dejamos a ti el placer de investigar dónde radica el secreto geométrico de este juego de magia.

¡¡Soy un valiente y quiero hacer la estrella!!

Para construir la estrella debes plegar la pieza en forma de acordeón. Luego extiende pegamento por la cara no impresa para formar una pieza como la que puedes ver en las fotos siguientes.

Plegar primero por los cuadrados IMG_7974

Despues en acordeon

ponemos pegamento

IMG_7977

La pieza con su forma final

Antes de que seque el pegamento debes meter un palillo, o la punta de un bolígrafo, para hacer un hueco en la parte inferior. Por este hueco vamos a introducir más adelante la punta del cono.

Haciendo hueco para insertar el cono

Haciendo hueco para insertar el cono 2

Una vez hecho todo esto, recortamos la forma de la estrella en cada una de las 3 partes que hemos formado. Ahora sí, la colocamos en la punta del cono con un poco más de pegamento.

recortamos la estrella

Ponemos pegamento en la punta

Arbol finalizado

Esperamos que os divirtáis construyendo el árbol y enseñando a vuestros amigos lo curiosas y fascinantes que pueden ser las matemáticas.

Y por supuesto os deseamos un 2016 lleno de proyectos cumplidos, ilusión, alegría y muchas matemáticas divertidas.

Posted by Nelo Maestre in Bricomates, Matemagia, Navidad, 2 comments