Mates del mundo real

Calendario Lunar

Remontándonos al siglo V a.C. y con vistas a hablar de las fases de la luna, nos gustaría hablaros de Metón de Atenas. Este astrónomo griego descubrió que 19 años solares del calendario equivalían a 235 meses lunares. Esto quiere decir que, después de 19 años, la luna volvía a pasar por las mismas fases en las mismas fechas. No obstante Metón estimó un error de 5 minutos por año, por lo que en algunos casos la luna llena puede no coincidir exactamente en el mismo día. Aunque fue Metón quien puso nombre a estos ciclos, hay escritos que indican que eran ya utilizados en Mesopotamia desde el siglo VI a.C. para predecir eclipses.

Y hablando de eclipses, ¿recordáis el eclipse de sol que tuvo lugar el pasado mes de Agosto? Seguro que fue un efecto mágico para todos aquellos que pudieron verlo en vivo y en directo. Lástima que desde España tuviéramos que conformarnos con verlo a través de las redes. Aún así, nosotros no nos lo perdimos, ¿y vosotros?

Un eclipse solar se da cuando la luna se interpone exactamente entre el sol y la tierra. Obviamente, este fenómeno sólo puede darse durante la luna nueva. Como todos sabemos, según la posición de la luna y el sol, puede verse luna llena, menguante,  creciente o nueva. Es por ello que, desde Divermates, queremos enseñaros cómo construir un calendario lunar que nos dirá qué luna habrá cada noche desde hoy hasta el año 2037.

¿Cómo se construye el calendario?

Lo primero que tienes que hacer es conseguir un rotulador negro, tijeras y pegamento, e, importante, una bola de poliespán o corcho blanco de unos 3 cm de diámetro, además de la hoja con el calendario que puedes descargar aquí:

Calendario Lunar – Divermates

Para facilitar la construcción es recomendable tener también un cúter, cinta de doble cara y un palillo de pincho moruno.

El calendario se compone de dos piezas, un círculo y un sobre. Lo primero que tendremos que hacer es recortar ambas piezas. ¡Atención!, el círculo con una cruz en el centro de la parte negra del sobre también hay que recortarlo.

La pieza circular la dejamos como está. El sobre tendremos que montarlo doblando por la mitad y echando pegamento en las solapas. Una vez montado el sobre, meteremos el círculo dentro.

Dejamos nuestro sobre a un lado y comenzamos a preparar la luna. Lo que vamos a hacer es pintar la mitad de la bola de color negro. Para ello recomendamos pinchar la luna en un pincho moruno y, aprovechando la línea perimetral que puede percibirse en la bola, colorear media bola.

Una vez hemos coloreado la mitad de la bola, recomendamos hacer un corte en la base. De esta forma cuando la vayamos a pegar en el calendario, lo haremos sobre una superficie plana.

Para unir la luna al calendario lo mejor es usar cinta de doble cara. La luna tenemos que pegarla en el circulito central de la pieza circular. Hay que hacerlo con cuidado, peg, pero, importante, hay que pegarla teniendo la pieza circular metida en el sobre. De esta manera la pieza quedará encajada y no podrá separarse del sobre. Si nos fijamos en el circulito central tiene medio círculo blanco y medio círculo negro. Es importante que peguemos la luna haciendo coincidir la parte coloreada con el semicírculo negro y la parte blanca con el semicírculo blanco. Una vez pegada, es aconsejable que comprobemos si al girar el disco gira también la luna.

¡Ya tenemos nuestro calendario lunar!

¿Cómo funciona?

Ya en el propio calendario por la parte de abajo vienen las instrucciones de uso. Para comprobar que tengamos el calendario bien hecho y que se entienden las instrucciones vamos a ver un ejemplo.

Como hemos empezado hablando del eclipse solar que tuvo lugar el 21 de agosto y ya hemos dicho que para que haya eclipse solar la luna ha de ser nueva, vamos a comprobar que el calendario nos da esta información correctamente.

“Lo primero que tienes que hacer es girar el disco donde están situados los años, hasta que coincida el año con el mes que quieres observar”, es decir, vamos a girar hasta hacer coincidir agosto y 2017.

“Una vez colocado correctamente, has de buscar el día del mes que quieres mirar y situar la cartulina horizontal a la altura de los ojos con el día apuntando hacia ti. Guiñando un ojo podrás observar en qué fase estará la Luna el día seleccionado”. En nuestro caso buscamos el día 21, y miramos desde tal día hacia la luna. Podremos observar que, efectivamente, está complemente negra, es decir, la luna, el 21 de agosto de 2017 es luna nueva.

Veamos, para terminar, un ejemplo con un año bisiesto. La siguiente imagen mostraría la luna el 3 de febrero de 2020. Primero hemos hecho coincidir febrero y 2020. Como el 2020 esta recuadrado por ser bisiesto, hemos de hacerlo coincidir con el febrero recuadrado. Y por último, miramos hacia la luna desde el día 3.

Esperamos que os haya gustado este calendario, y, en caso de ser fanáticos de la astronomía, le deis uso, para, por ejemplo, planear vuestras salidas con el telescopio.

Posted by Nelo Maestre in Bricomates, Curiosidades, 0 comments

Un rompecabezas topológico de Fibonacci


Ya estamos de vuelta de las vacaciones, y en este mes de vuelta a clase nos gustaría retomar el curso con un rompecabezas topológico casero.

La topología puede parecer una parte algo compleja de las matemáticas cuando no has estudiado matemáticas a fondo. Nosotros en Divermates tenemos un taller dedicado exclusivamente a esta rama de las matemáticas, para niños de segundo de primaria. A priori puede parecer una locura tratar de hacer entender mínimamente a un alumno de 7 años lo que es  la topología, pero nosotros asumimos el reto, y, a día de hoy, podemos presumir de conseguirlo.

Formalmente la topología estudia las propiedades de las figuras que permanecen invariantes al ser sometidas a ciertas transformaciones, de forma que no aparezcan nuevos puntos o nuevos “agujeros”. Es la geometría donde solo nos interesamos por la forma, sin atender a la medida.

En nuestro taller hablamos de la cinta de Möbius, cuya particularidad es tener un único un borde y una única cara. Al principio a los alumnos les parece una locura. Pero después de hacer distintos juegos y actividades entienden perfectamente este concepto.

Pero no es la banda de Möbius lo más interesante de la topología. Hay muchos problemas que han tratado grandes matemáticos a lo largo de la historia. Tenemos los puentes de Konigsberg, famosos problemas de nudos, el teorema de los cuatro colores, la botella de Klein, grafos… Os animamos a profundizar sobre estos juegos, modelos y problemas.

Sin embargo, la topología más al alcance de todos es quizá la que esconden los juegos topológicos de madera o metal. Seguramente alguna vez has visto alguno de estos juegos, donde aparecen elementos unidos por cuerdas que a simple vista parecen imposible de separar. Estos juegos topológicos ayudan a desarrollar la visión espacial, despertar la curiosidad y potenciar la paciencia y resolución de problemas con ingenio.

Os mostramos a continuación algunos de una colección muy especial:

¿Te gustaría construirte tu propio rompecabezas de papel?

Se cuenta que Chandlahuri, un sirviente indio de Fibonacci, regaló un rompecabezas como este al matemático pisano. Este rompecabezas fue llamado por Fibonacci como “lo joco enimmatico del brachiale torquato“, es decir, “el juego enigmático del brazalete retorcido”.

¿Te has fijado en el diseño del rompecabezas? En honor al gran Fibonacci hemos querido dejar plasmada la sucesión que lleva su nombre en el brazalete: 1 1 2 3 5 8 13 21 34 55… Esta sucesión tiene muchas propiedades matemáticas, como, por ejemplo, la construcción de la espiral áurea que también podrás observar en el rectángulo.

Para construirtelo sólo necesitarás, tijeras, pegamento, un cordón de unos 25-30 cm. y el recortable que puedes descargar aquí:

Rompecabezas Topológico – Divermates

Como vamos a hacer un juego que vamos a manipular mucho con las manos te recomendamos construirlo con cartulina.

Lo primero que hay que hacer, como siempre, es recortar todas las piezas. Nuestro juego consta de un cuadrado, un rectángulo áureo y dos tiras onduladas. Observa que el cuadrado tiene un agujero en el centro, y que ambas piezas cuadriláteras tienen una cruz por donde deberá pasar la cuerda.

A continuación pegamos las dos tiras, poniendo pegamento solamente en las solapillas. Fijaos bien en dejar las tiras bien entrelazadas una con la otra, pero solo pegadas por los extremos.

Una vez tenemos nuestra pieza principal, la unimos a los cuadriláteros de la siguiente manera:

  • Primero anudamos la cuerda y la pasamos por la cruz del rectángulo.

  • A continuación hacemos pasar la cuerda por el agujero del centro del cuadrado.

  • Llevamos la cuerda por los dos huecos extremos de nuestro brazalete.

  • Y para terminar, la pasamos por la cruz del cuadrado para terminar haciendo un nudo.

¡Ya tienes tu rompecabezas topológico listo!

Ahora solo te queda aprender a deshacerlo, sin despegar las piezas, claro. ¿Eres capaz de separarlas estudiando únicamente los enredos de la cuerda y los agujeros de las piezas?

Pista:

los agujeros en este juego, como en casi todos los de este tipo, son clave.

¡Ánimo con ello! Tanto si lo consigues, como si tienes dudas, no dudes en dejarnos un comentario.

BIBLIOGRAFIA

Sarcone, G.A. (1997-2017). Torquato Puzzle: Archimedes Laboratory Project. Recuperado de aquí.

 

 

Posted by Nelo Maestre in Bricomates, Curiosidades, 0 comments

El armonógrafo y el dibujo del sonido

Un armonógrafo es un aparato mecánico que dibuja diferentes curvas utilizando únicamente el movimiento de distintos péndulos.

La idea del armonógrafo tiene su origen en el matemático Jules Antoine Lissajous (1822-1880) y su gran interés por el movimiento ondulatorio y las vibraciones del sonido. Se dice que lo que realmente buscaba Lissajous era dibujar el movimiento vibratorio provocado por el sonido. En sus primeros experimento hacía rebotar un rayo de luz en distintos diapasones, descubriendo así estas curvas tan inusuales.

Es a mediados del siglo XIX cuando nacen los armonógrafos, como una manera de analizar las vibraciones y, en concreto, de estudiar el sonido, de forma análoga a como lo había hecho Lissajous.

¿Cómo funciona?

Un armonógrafo sencillo utiliza dos péndulos para controlar el movimiento de un rotulador en relación con una superficie plana donde dibuja. Un péndulo mueve el rotulador y el otro péndulo la superficie de dibujo. Al variar la velocidad, la frecuencia y la fase de los péndulos, se crean diferentes patrones.

Los armonógrafos más complejos, pueden incorporar tres o más péndulos unidos entre sí y dibujar figuras más complejas.

Debido al rozamiento del rotulador y a que los péndulos van deteniéndose y cambiando sus oscilaciones poco a poco, tenemos como resultado trayectorías muy interesantes desde el punto de vista físico, matemático y artístico. Al estar unidos ambos péndulos por medio del rotulador y el dibujo, las velocidades y oscilaciones se van traspasando de uno a otro, haciendo que los dibujos cambien de forma.

Longitud de los péndulos

El tiempo que tarda un péndulo en realizar una oscilación sólo depende de la longitud del péndulo, no de su peso ni de la longitud del arco que recorre. Cuánto más largo sea el péndulo más tiempo tardará en oscilar (y menor será su frecuencia).

En concreto, la frecuencia de un péndulo varía inversamente con la raíz cuadrada de la longitud del péndulo. Es decir, que para triplicar la frecuencia de un péndulo, debemos reducir su longitud a la novena parte.

Como explicamos en nuestra conferencia y nuestro taller de música quebrada, dos sonidos suenan bien a nuestros oídos si la  frecuencia de uno es una fracción simple de la del otro. Es decir, una cuerda y la que mide 1/2, 2/3, o 3/4 sonarán bien entre sí. Debido a la relación entre el armonógrafo y la música (recordamos que surgió para “dibujar el sonido”), sólo cuando la relación entre las frecuencias de los péndulos sea igualmente una fracción simple dará como resultado una curva reconocible. En caso contrario, saldrán curvas caóticas que se alejan de la belleza de las curvas de Lissajous.

El peso del péndulo

Como ya hemos dicho, el peso no altera la frecuencia del péndulo, pero sí influye en el rozamiento. A mayor peso, menor rozamiento. Así, si el péndulo se detiene muy pronto, se puede aumentar su peso para que tarde más en pararse e igualmente a la inversa.

MÁS INFORMACIÓN

Martín Reina, D. (21 de septiembre de 2011). El armonógrafo [entrada en blog]. La Aventura de la Ciencia. Recuperado de http://laaventuradelaciencia.blogspot.com.es/2011/09/el-armonografo.html

Posted by Nelo Maestre in Curiosidades, 0 comments

Octaedro I Ching, un juego de matemagia

El I Ching o Libro de los cambios es uno de los libros más viejos del mundo del que se desconocen los orígenes. Durante más de 2000 años se ha utilizado en el Oriente como libro de adivinación, y todavía hoy se estudia con gran respeto como fuente rica en sabiduría. Decenas de miles de jóvenes que secundan el renacimiento actual del ocultismo consultan el I Ching con la misma seriedad que consultan la tabla Oiuja o las cartas del tarot.

La base combinatoria del I Ching consta de 64 hexagramas que muestran todas las permutaciones posibles de dos tipos de líneas, al tomarlas de seis en seis. Estos dos tipos de línea revelan la dualidad básica de la metafísica china: la línea cortada corresponde al yin y la línea continua al yang.

  • Tomando las líneas de dos en dos, hay 4 formas distintas de combinarlas (digramas).
  • Tomando las líneas de tres en tres, tenemos 8 formas distintas (trigramas).

Combinando los ocho trigramas, obtenemos los 64 hexagramas. Sustituyendo por un 1 cada línea continua, y por un 0 cada línea cortada, y tomando los hexagramas por orden, leyéndolos de arriba a abajo en cada uno se obtiene la sucesión 000000, 000001, 000010, 000011,…, 111111; que no es otra cosa que la de los números del 0 al 63 expresados en notación binaria. Hasta los tiempos de Leibniz no se reconoció este isomorfismo entre los hexagramas y la notación binaria.

Utilizando estos datos, vamos a comenzar nuestro juego de magia usando los ocho trigramas distintos. Para construir este juego nos hemos basado en un juego de Bob Hummer.

Construcción del octaedro I Ching

En Divermates hemos construido un octaedro con los ocho hexagramas con el que podrás realizar un nuevo truco de matemagia.

Para construir el octaedro I Ching sólo necesitarás tijeras, pegamento y el recortable que puedes descargar aquí:

Octaedro I Ching – Divermates

En cada pdf aparece el juego por duplicado, así podrás regalarle un octaedro a algún amigo. Cada juego consta de un octaedro plegable y un sobrecito para guardarlo.

Primero tendrás que recortar ambas piezas.

Comenzando por el octaedro, dobla por todas las líneas.

A continuación, echa pegamento en todas las solapillas para pegarlas como muestran las siguientes imágenes.


La figura resultante será un octaedro que puede plegarse y meterse en un sobre.

Para formar el sobre, únicamente tendrás que echar pegamento en las dos solapas.

¡Ya tenemos listo nuestro juego!

Realización del juego de magia

Antes de empezar, daremos a elegir a nuestro espectador uno de los ocho trigramas. Luego iremos moviendo el octaedro para saber en qué posiciones puede ver el trigrama elegido. En cada uno de estas posiciones nuestro espectador sólo tendrá cuatro trigramas visibles. Al final, con tres preguntas podremos adivinarlo.

Para facilitar la explicación de este juego, aquí os dejamos un vídeo con el procedimiento completo.

Numeración binaria

Otra opción para adivinar el trigrama seleccionado por nuestro espectador es usar la numeración binaria.

Si sustituimos, como dijimos antes, cada línea continua por un 1, y cada línea cortada por un 0, los ocho trigramas corresponden a los números del 0 al 7 en notación binaria.

Sólo tenemos que tener en cuenta la siguiente información:

La primera respuesta vale 1, la segunda respuesta vale 2 y la tercera 4. Esto se debe a que al utilizar la numeración binaria debemos usar las potencias de dos. Sabiendo esto, sólo tendremos que sumar estos valores cuando nuestro espectador responde SI.

Por ejemplo, si las respuestas de nuestro espectador son, en orden, NO-SI-SI, tendremos que sumar 0+2+4=6, obteniendo el lago.

Observa que la respuesta coincide con el método del video: NO-SI-SI corresponde a línea cortada-continua-continua.

BIBLIOGRAFIA

Fulves, K, (1988), Bob Hummer’s Colllected Secrets

Gardner, M, (2010), Rosqullas anudadas, Barcelona, RBA Libros.

Pla i Carrera, J, (2009), Liu Hui: nueve capítulos de la matemática china, Madrid, S.L. Nivola Libros y Ediciones.

Posted by Nelo Maestre in Bricomates, Curiosidades, Matemagia, 0 comments
Regla de cálculo, un viaje al pasado

Regla de cálculo, un viaje al pasado

La regla de cálculo es un instrumento que nos sirve para realizar operaciones matemáticas, como pueden ser multiplicaciones o divisiones, e incluso porcentajes, cálculos de proporcionalidad o raíces cuadradas.

ejemplos_de_regla_de_calculo

Fue sustituida inevitablemente por las calculadoras, pero durante más de 400 años fue instrumento imprescindible para todo científico o ingeniero. Por poner un ejemplo, muchos de los cálculos llevados a cabo durante las misiones Apolo, que llevaron al hombre a la luna, fueron realizados con reglas de cálculo. Hay que decir que por entonces la informática aún estaba dando sus primero pasos.

Hoy desde Divermates queremos dejaros un modelo para que os fabriquéis vuestra propia regla de cálculo. Para construirla solo necesitas pegamento, tijeras, e imprimir, a ser posible en cartulina, la plantilla que puedes descargar aquí:

Regla de cálculo – Divermates.

regla-de-cálculo--materiales

A continuación te detallamos las instrucciones para su montaje, que es muy sencillo:

Para empezar, recorta por todas las líneas continuas, separando la cartulina en las 7 piezas que vamos a necesitar. Estas piezas se pegarán en 3 capas:

  • Una capa inferior fija y única.
  • Otra capa intermedia que tiene 3 partes.
  • Una capa superior donde aparecen impresas las reglas propiamente dichas.

Es muy importante cortar las piezas de la forma más precisa posible, pues su buen deslizamiento dependerá de estos cortes. Aconsejamos hacer estos cortes con cutter y regla metálica.

regla-de-cálculo--piezas-cortadas

Primero pegamos una de las piezas más pequeñas de la capa intermedia sobre la cara no impresa de la base.

regla-de-cálculo--pegando-primera-pieza

Ahora pegamos la otra pieza pequeña de la capa intermedia. Para garantizar que la pieza central se podrá mover con libertad pero sin holgura, debemos usarla como referencia. Para ello colocamos en su posición dicha pieza (de color gris) pero sin pegarla. Una vez fijada la pieza pequeña, conviene deslizar la pieza gris a izquierda y derecha para comprobar que se desplaza.

regla-de-cálculo--pegando-segunda-pieza

regla-de-cálculo--comprobar-movimiento-de-la-pieza-gris

Debemos pegar ahora la parte inferior de la capa superior. Aplicaremos el pegamento en la pieza intermedia ya pegada a la base, de forma que la nueva pieza que colocamos quede limpia de pegamento en la parte sobrante, ya que nos servirá para construir el carril sobre el que se deslizará la pieza central. Para facilitar este paso puedes extraer la pieza gris por el momento.

regla-de-cálculo--pegando-regla-d

Ahora con la pieza gris de nuevo en su espacio pegamos la pieza de las reglas B-L-C sobre ella. Echamos el pegamento sobre la pieza de la regla, de forma que no quede pegamento sobrante sobre la pieza gris. Debemos intentar alinearla bien contra la regla D que ya tenemos pegada.

regla-de-cálculo--pegando-regla-b-l-cQueda la última pieza, la de las reglas K-A, que pegaremos sobre la pieza superior de la capa intermedia. De nuevo es importante que no caiga pegamento en la parte que permanece visible de la pieza gris. Para ello puede ser más sencillo si deslizamos esta pieza fuera para aplicar el pegamento. Además es importante alinear al 1 las reglas D y B-L-C, y también la nueva pieza de las reglas K-A cuando se fija en su lugar.

regla-de-cálculo--poniendo-pegamento-para-regla-k-a

regla-de-cálculo--pegando-alineada-la-regla-k-a

Después de presionar la pieza K-A para que se fije con el pegamento, hay que deslizar la pieza central a izquierda y derecha suavemente para que no se pegue con algún resto de pegamento y deslice suavemente.

regla-de-cálculo--comprobar-que-desliza-derecha

regla-de-cálculo--comprobar-que-desliza-izquierda

Y con esto tenemos lista nuestra regla de cálculo. Por ahora no hemos diseñado un cursor, dejamos esto a tu creatividad. En cualquier caso se puede utilizar cualquier regla para esta función.


¿Cómo funciona la regla de cálculo?

Comenzamos con multiplicaciones (usamos las letras C y D):

  • 2×3     Alineamos el 2 del D con el 1 del C, y nos fijamos con qué cifra del D coincide el 3 del C:          2×3=6

regla-de-cálculo--multiplicaciones-1

  • 2×8     Al alinear el 2 del D con el 1 del C, el 8 del C queda fuera de la regla. Cuando nos ocurre esto, tenemos que alinear el 2 del D, no con el 1 de C, sino con el 10 del C, para fijarnos de nuevo con qué cifra del D coincide el 8 del C:           2×8=16

regla-de-cálculo--multiplicaciones-2

Cuando tenemos distintos dígitos, o incluso decimales, hemos de saber la magnitud del resultado. La regla de cálculo nunca nos dice dónde iría la coma.

Vemos dos ejemplos, 11×25=275 y 1,1×2,5=2,75. Ambos se realizarían de igual manera, por lo que tenemos que saber la magnitud del resultado.

regla-de-cálculo--multiplicaciones-3

Para realizar divisiones se realizaría de forma inversa.

Por ejemplo, para hacer 6/3, tendríamos que hacer coincidir el 6 del D, con el 3 del C, para luego fijarnos con qué cifra del D coincide el 1 del C:           6/3=2

Vamos a ver cómo hacer cuadrados o raíces cuadradas (usamos las letras A y D, con la regla en posición inicial):

  • La letra A nos muestra el cuadrado del número que visualicemos en la letra D:           32=9
  • Así mismo, la letra D nos muestra la raíz cuadrada del número que visualicemos en la letra A.

regla-de-cálculo--raices-y-cuadrados-2

Intentamos ahora multiplicaciones dónde un multiplicando es un cuadrado (usamos las letras A, B y D):

  • 22x5    Alineamos el 2 del D con el 1 del B, y nos fijamos con qué cifra del A coincide el 5 del B:          22x5=20

regla-de-cálculo--multiplicando-cuadrado

Por último, veamos cómo hacer logaritmos en base 10 (usamos las letras L y D, con la regla en posición inicial):

  • La letra L nos muestra el logaritmo en base 10 del número que visualicemos en la letra D:           ln2=0.3

regla-de-cálculo--logaritmos

* Ojo! La escala de esta regla con la letra L es decimal, empieza en el 0.0 y acaba en el 1.0, pasando por 0.1, 0.2,… (pensad, que el logaritmo de 10 es 1).

Para más información, o instrucciones sobre otras operaciones, recomendamos visitar el siguiente vídeo. Es muy antiguo pero eso le da una autenticidad muy apropiada para esta herramienta.


 

 

Posted by Nelo Maestre in Bricomates, Curiosidades, 0 comments
Concurso de Cortos de Divulgación “Martin Gardner”

Concurso de Cortos de Divulgación “Martin Gardner”

Tenemos una propuesta para ti: Coge tu móvil y cualquier libro que tengas de Martin Gardner. Busca quienes serán tus actores (menores de 19 años) y cuéntanos cualquier concepto de divulgación matemática que se trate en alguna de las obras de Martin Gardner.

No hace falta una gran producción, solo una idea ingeniosa y bien contada. Tienes que contarla deprisa, en menos de 10 minutos. No es imprescindible grabarlo con el móvil, si lo prefieres puedes hacerlo con cualquier técnica y con toda la calidad que desees.

Súbela a youtube y rellena los datos del formulario, y ya estás dentro del Concurso de Cortos de Divulgación “Martin Gardner”, organizado por el Ayuntamiento de Velilla de San Antonio, con la ayuda de Divermates y el apoyo de FECYT.

Bases y ficha de Inscripción al Concurso de Cortos de Divulgación Matemática.

También puedes elegir primero el tema y comprobar si Martin Gardner escribió sobre él, es muy probable. En internet pueden consultar su bibliografía. También puedes buscar si publicó algún artículo del tema que te gusta en su “columna matemática” de la revista Scientific American. Hay una lista completa de los títulos de los artículos aquí.

Esperamos vuestras propuestas como homenaje al más grande divulgador de las matemáticas, para terminar de conmemorar los 100 años de su nacimiento.

Marrtin Gardner con botella de Klein

Martin Gardner con botella de Klein

 

Posted by Nelo Maestre in Curiosidades, Divermates en acción, 0 comments

Centro de masas

Nos hemos adentrado en el mundo de la física para explicar a nuestros alumnos más pequeños lo que significa “centro de masas”.

Han aprendido todo lo que tienen que saber para mantener el equilibrio de su propio cuerpo y a hacer un par de juegos de magia sorprendentes, como dejar una lata de refresco o una varita mágica en posiciones de equilibrio que parecen imposibles.

Posted by Nelo Maestre in Extraescolares, 0 comments

Rumbo a las estrellas

En nuestra visita al Colegio Legamar los alumnos aprendieron como han usado los marineros durante siglos las estrellas para orientarse en las noches en el medio del mar. Además se construyeron su propio astrolabio para poder convertirse en auténticos navegantes

Astrolabios

Posted by Nelo Maestre in Divermates en acción, 2 comments

Matemáticas microscópicas

Pues aquí tenemos el nuevo “juguete” de Divermates, un microscopio USB con el que los alumnos podrán ver proyectadas las muestras que vamos a usar en nuestra actividad sobre “Matemáticas Microscópicas”. La forma poliédrica de algunos virus o granos de polen, la doble hélice del ADN, las formas súper simétricas de algunos animales microscópicos o las formas en las que se distribuyen las paredes celulares de los tejidos vegetales son algunas de las matemáticas que están escondidas en lo más pequeño…¿Se te ocurren más ejemplos?

Microscopio

Posted by Nelo Maestre in Divermates en acción, 0 comments

Tensegridades

Miguel de Guzmán, una de las personas más influyentes en las nuevas formas de trabajar en matemáticas era un enamorado de las tensegridades.

Seguro que le encantaría esta versión tan simple que nuestros alumnos van a construir solo con materiales que se encuentran fácilmente por casa.

tensegridad modelo

Posted by Nelo Maestre in Extraescolares, 0 comments